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Abstract—Although non-invasive brain computer interfaces functional magnetic resonance imaging (fMRI), and near in-

(BCI) based on electroencephalographic (EEG) signals have beenfrared spectroscopy (NIRS). They encompass the most active
studied increasingly over the recent decades, their performance areas of BCI research [5].

is still limited in two important aspects. First, the difficulty L . o
of performing a reliable detection of BCl commands increases Among these brain imaging modalities, EEG has most

when EEG epoch length decreases, which makes high information 0ften been used for BCI due to the high temporal resolution
transfer rates (ITR) difficult to achieve. Second, the BCI system of the measured brain signals, device portability, low cost.
often misclassifies the EEG signals as commands, although theRecently, coordinated scientific efforts have been made in
subject is not performing any task. In order to circumvent . qar 1o develop EEG-based BCI systems, as can be illustrated

these limitations, the hemodynamic fluctuations in the brain
during stimulation with steady-state visual evoked potentials by the emergence of open-access data and EEG-based BCI

(SSVEP) were measured using near infrared spectroscopy (NIRS) COmpetitions (see for instance [6], [7]), which led to improve-
simultaneously with EEG. BCl commands were estimated based ments of signal processing and classification algorithms. The
on responses to a flickering checkerboard (ON-period). Further- short response times of the brain processes underlying EEG

more, an “idle” command was generated from the signal recorded e ;
: ~PTUEY allows users to control an external device in near-real-time [8]—
by the NIRS system when the checkerboard was not flickering [8]

(OFF-period). The joint use of EEG and NIRS was shown to [10]. For ipstance, Hill and coauthors [11], in an evaluation
improve the SSVEP classification. For 13 subjects, the relative Of motor imagery based BCI, compared the performance
improvement in error rates obtained by using the NIRS signal, of EEG, MEG, and electrocorticography (ECoG) recording
for 9 classes including the “idle” mode, ranged from 85 to 53 modalities, and concluded that EEG allowed better general
%, when the epoch length increase from 3 to 12 seconds. Thesg,q formance than the other modalities. Furthermore aditt

results were obtained from only one EEG and one NIRS channel. | d tal task ition techni .
The proposed bimodal NIRS-EEG approach, including detection al. proposed a mental task recognition technique using near-

of the idle mode, may make current BCI systems faster and more real-time spontaneous EEG signals: they were able to classify

reliable. correctly three mental tasks with a success rate of%/0
Index Terms—BCl SSVEP. Simultaneous EEG and NIRs. [12]. Other studies, based on P300 evoked potentials, obtained
Bimodal. ' ’ " higher classification performance [13]. BCI systems based on

steady-state visually evoked potentials (SSVEP) turned out to
be very successful [14]-[17].
|. INTRODUCTION Nevertheless, improving EEG-based BCI performance is
IRECT communication techniques enabling the edlill a challenge. First of all, the reliability of command
D change of information between the brain and compute‘i’§teCt.i°” decreases as recording time decrea;es._The search for
such as Brain Computer Interfaces (BCIs) have been gainigradigms that can detect BCI commands with high temporal
momentum over the recent decades. One of the pioneerfﬁ&omt'on is stllll active. In addition, most studies ignore BCI
studies using monkeys was proposed in [1]. Although FvStem behavior in an idle mode when the user does not
these early BCI experiments the subject was not human, dgguire any action. In BCI systems using visual stimuli, the
a steel plug was permanently implanted over the precentPAIPIECtS can activate a command by focusing his attention on
cortex, subsequent studies demonstrated the possibility ¢ Of several stimuli. However, in practice it is not easy
non-invasive analysis of the human brain due to the rapi@ focus attention for a long time, as subjects may become
development of neuroimaging modalities and signal processifiyerted, drowsy, or unwilling to look at the stimulation.
techniques [2]-[4]. Currently, several non-invasive function&onsequently, SSVEP BCls often send signals when the user
imaging modalities are available for research, such as eléid not intend to convey anything (called false positives),

troencephalography (EEG), magnetoencephalography (ME(’B’ﬂiFh can be especially problematic during breg_ks or re.st.ing

periods [18]. Such occurrences should be identified explicitly
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Fig. 1: Principles of a bimodal BCI using EEG and NIRS simultaneously.

TABLE I: Previous studies related to NIRS-based BCI. Motor imagery task is the most frequently used paradigm.

Authors Modality Task NIRS Features

Coyle et al. [19] NIRS Motor imagery Averaged concentration

Sitaram et al. [20] NIRS Motor imagery Averaged concentration

Tai and Chau [21] NIRS Emotional induction Mean, variance, and so on

Pfurtscheller et al. [18] NIRS-EEG  Concentration (brain switch) Moments (2nd to 4th order), mean, root-mean square, wavelet
Takeuchi et al. [22] NIRS-EEG  Electrical stimulation Peak response

Fazli et al. [23] NIRS-EEG  Motor imagery Averaged concentration

the widely-spread environmental electrical noise and much legsectives for NIRS-BCI could arise from these investigations
sensitive to EMG (muscle) artifacts than EEG. NIRS measurakhough so far there have been only a few BCI studies using
oxygenated hemoglobin (Hb) and deoxygenated Hb conceéhe NIRS recording modality as compared to EEG. The basic
trations. In addition, the blood oxygenation level-dependehemodynamic brain response, as well as the noise cancellation
(BOLD) signal elicited by visual stimulation has been weltechnique which is applied before the feature extraction step,
described using fMRI [24], [25]. Blood Hb concentratiorare also explained in this section.
changes have been clearly shown to be related to the presence
and absence of the stimulation. Other studies using _EEQ_, Existing NIRS-BCI methods
fMRI, and NIRS [19], [23], [26]-[28] lead to the conclusion .
that hemodynamic changes may be a promising indicatorTable | shows a summary of NIRS-BCI research publica-
to overcome the limitations of the command detection. FgPNS- Many of these studies were based on motor imagery of
instance, for a wheelchair control BCI, the detection of onslif9er and arm movements. They detected blood oxygenation
and offset responses improves the BCI usability: when thgSPonses (slow oscillations at 0.1-0.5 Hz) following motor
subject is not willing to execute a command, the wheelchajf@dery. and concluded that motor imagery was appropriate
should not move. for NIRS-BCI applications [19]-[21]. On another hand, it was
Fig. 1 illustrates the joint use of EEG (for comman uggestgd.that the re'liability of N!RS-BCI 'could be improved
detection) and NIRS (the detection of stimulation onset a combining NIRS_ with othe_r brain rec_o_rdmg mOd_a“t'E’TS' The
offset) in a BCI system. In this study we present such pncept of combining re_cordmg modalities is detailed in [18],
approach and demonstrate its use in a BCI system basedony: [23] For example in [23], the performance of a sensory
steady-state visually evoked potentials (SSVEP). moto_r rhythm (SMR) based BCI was significantly improved
The organization of the paper is as follows. Section Il give%y S|mulltane.ous measurement ,Of EEG and NIRS. Another
details on the NIRS BCI and on NIRS signal processing. ﬂUdy with simultaneous record'”g of N_IRS a_nd EEG [2_2]
section lll, the experimental protocol and the joint EEG—NIR§1ea_SureOI the responses to electrical stmulatlon at the right
BCI design are presented. Sections IV, V, and VI contamecjlan nerve, and (_:oncluded that evall_Jatlng NIRS and EEG
results, discussions and conclusions respectively. simultaneously provided useful information. o
In the present paper, we merge EEG and NIRS modalities in
an SSVEP-based BCI. SSVEP is already a powerful paradigm
for EEG-based BCI because responses to steady-state visual
stimuli have a very good signal-to-noise ratio. The idea that
Before describing the joint EEG-NIRS BCI paradigm, wéIRS could be used as a brain switch to turn on or off
will first present a rationale for our approach based on sorttee SSVEP detection in an SSVEP-based BCI is discussed
previously published NIRS-based BCI techniques. New pen [18], but using a different approach: a cognitive NIRS

Il. FEATURE EXTRACTION FOR HEMODYNAMIC
RESPONSES
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Fig. 2: Hemodynamic response changesH® and HHb) corresponding to visual stimulations indicated by the gray colored periods (see
section Il in details). (a) Block-averaged result for all 37 blocks after low-pass filtering (redbOblue: HHb) and (b) Trial-averaged
result for 37(blocks) 8(trials of consecutive ON- and OFF-periods pairs).

x107* x 10~

; 20 N /

x10°

) 10 20 30 T 10 20 30 0 10 20 30
time [sec] time [sec] time [sec]
(a) Hemodynamicresponse (b) Derivative (c) 2nd derivative

Fig. 3: Event related NIRS features. (a) Hemodynamic responses (p¢th, ®lue: HHb, black: @Hb-HHDb). (b) and (c) show the 1st and
2nd derivatives of @Hb-HHDb, respectively. Positive and negative of 1st derivative, and extrema of 2nd derivative are shown.

response is detected in the prefrontal area, whereas we w#riod. Therefore, the 1st and 2nd derivatives may be useful
focus in this manuscript on sensory responses in the occipii@htures to detect the onset and offset of the visual stimulation.
area. Indeed, NIRS studies of SSVEP brain responses show
that even though the hemodynamic responses are slower, they,, . . .
do exhibit changes after stimulation onset and offset [29]" Noise reduction for NIRS signal

Therefore, the onset and the offset could be estimated byNIRS signals are subject to noise, arising for instance from
detecting the hemodynamic fluctuations in response to vislgldy movements, heart rate, and respiration effects [30]. For
stimuli. the purpose of BCI, noise components should be removed in
real time from the hemodynamic signals. So far, NIRS signal
noise removal algorithms have been implemented focusing on

) i __specific types of noise (cardiac, Mayer wave, respiration). In
Changes in blood oxygenation accompany neural activithany studies, noise-canceling algorithms have been investi-

Although they are slow and delayed with respect to neurghieq using methods such as a Kalman estimator for gener-
activity, they convey information about the timing of ”el?raflized linear models (GLM) coefficient updating [31], least
activity. Hemodynamic signal changes due to SSVEP visughyares regression [32], wavelet-based filtering, independent
stimulation are affected by physical and physiological nOiS@omponent analysis (ICA) [33], and adaptive filtering [33]-

In most offline studies, the noise is canceled out by averagi[g;]_

trials over time. Fig. 2-(a), (b) show the changes of oxyger_lated\,\,hen investigating the properties of NIRS signal noise
Hb (OHb) and of deoxygenated Hb (HHD) concentrationgffiine, phase-locked brain responses evoked by the same
during steady-state visual stimulation. The signals were timgimulation in multiple trials can be averaged in the time
averaged for 37 trials in an experiment using pseudo-randonglymain. Using this approach, one expects noise components
displayed stimuli (see section llI for details). Fig. 2 indicateg, pe canceled out because they are assumed to be additive of

that NIRS responses to the visual stimulation appear Wil expectation value. Fig. 2 shows the signals averaged over
a delay of 2-3 sec after the beginning and the end of tRge_ 37 plocks:

stimulation. 1 N

Fig. 2 also shows that changes iakh and HHb are nearly X(t)=§ lei(t) 1)
symmetric. We make use of the 1st and 2nd derivatives of =
the difference between the concentrations of oxygenated amidere x;(t) is the hemodynamic response at tihef the
deoxygenated hemoglobin,Bb-HHb (Fig. 3-(a), (b) and (c)). ith trial. The signal-to-noise ratio of a given NIRS event
The derivative is positive in most regions of the ON-periodglated potential is therefore enhanced when several trials are
and vice versa for the OFF-period. Moreover, an extremum a¥eraged. In order to evaluate the optimal frequency for the
the 2nd derivative can be detected at the beginning of eddlRS response to reversing checkerboards, we averaged all

B. Hemodynamic responses to SSVEP stimulation
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Fig. 4: EEG electrodes and NIRS probes are positioned in the occipital area. Each NIRS channel is located between an optical source and ar
optical detector. 4 EEG electrodes are positioned at the same locations as the corresponding 4 NIRS channels (NIRS-2, NIRS-9, NIRS-12,
NIRS-13, and NIRS-16).

the trials in the Fourier domain. Letting(eiw) be the Fourier different wavelengths (7805, 8055, 83Gt5 nm) and Hb
transform of a NIRS signak(t), the average Fourier powerconcentration changes were estimated gdi6) HHb, and total
is: Hb change (@Hb+HHb) based on the modified Lambert-Beer

F o) = [X(e9) = | ;x (&9). (2) 'aw.
The experimental setup of the EEG system (V-amp, Brain
We normalize this spectrum as follows: Products GmbH) included six active electrodes. Before each
recording, a small amount of gel was applied directly to
R(w) = F (0)/G(w) Z‘X' (el®y]. (3) the scalp to minimize the impedance (below 2Q in our
experiment) for all electrodes. 2RQ is a valid threshold
when using active electrodes. The reference electrode was
placed on the mandible bone near the left ear, and the ground
electrode was placed at Cz according to the international
Il M ETHODS 10/20 system. The most posterior electrode (EEG-5) was
' placed at Oz according to the international 10/20 system. All
13 healthy subjects, who did not suffer from any braigEG measurement electrodes were positioned at the midpoint
disorder, with normal or corrected to normal vision, and whgetween the NIRS probes. This ensured that the locations of
did not have any prior training participated in this experimeffe EEG electrodes coincided with the locations of the NIRS
after signing written informed consent forms. The experimeghannels. The sampling rate of the EEG recording was 500
tal design and the analysis methods for joint EEG-NIRS-B{z. All signals were passed through a digital Butterworth low-

The pulsation that maximizé(w) in (3), is the most relevant
component, that we estimated @t~ 0.033 Hz.

are detailed thereafter. pass filter of order 3 and with a 40 Hz cutoff frequency, and a
digital Butterworth high-pass filter of order 3 and with a 0.5
A. Recording and stimulation Hz cutoff frequency.

A special head cap was designed to record simultaneoushEEG and hemodynamic changes were recorded while the
NIRS and EEG signals. This cap was flexible enough to fit trseibjects focused on visual stimulations displayed on a screen.
surface of the head. The head cap contained circular incisid@sbjects were seated 1.0 m from a 17-inch LCD computer
for the EEG electrodes and similar incisions for the NIRS8isplay operated at a nominal refresh rate of 60 Hz. They
probes, placed over the occipital area as shown on Fig. 4. Twere instructed to fix their gaze on a small cross appearing
distance between any two NIRS sensors was fixed at 3 dm.the center of the screen. In this setup, the display had
The EEG electrodes were placed between the NIRS sensaas25 cm height, therefore the visual angle of the display

The setup of the NIRS instrument (OMM 3000, Shimadzwyas calculated to be 7.3arc at most § ~ (25/2)/100 rad).

Co. Ltd) consisted of six optical source probes (Near-IR sen@ontinuous SSVEP stimulation was presented using revers-
conductor lasers) and six detector probes covering the occipitaj black-and-white checkerboards with X188 squares. A
area. NIRS signals were recorded using pairs of neighboribhgbad range of stimulation frequencies was presented (eight
source and detector probes. The midpoint between such a piifierent reversing frequencies from 4.8 to 11.8 Hz): 4.8, 5.3,
of probes was regarded as the probable location of the bréi®, 6.5, 7.3, 8.4, 9.8, and 11.8 Hz (see [17] for frequency
hemodynamic changes recorded by the corresponding NIB&imization). All stimulation frequencies were displayed once
channel. There were 17 NIRS channels (see the locatiaech during a recording (defined as a block). A block had an
in Fig. 4), recorded with a sampling of 70 ms. All signal®verall duration of about four minutes. During each block,
were passed through a digital Butterworth low-pass filter @he trial for each of the eight possible reversal frequencies
order 3 and with a 0.04 Hz cutoff frequency. Hemodynami@as recorded, with stimuli presented in a randomized order.
changes were estimated for each NIRS channel using thi2aring a given block, each stimulus was displayed for 15 sec,
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that QHb increases after the beginning of stimulation and

| e BN B BN B decreases after the end of stimulation, and vice versa for HHb.
0 50 m%me [Sec; %0 200 250 These variations in hemodynamic responses may be measured
(b) dzy using temporal derivative estimations, which are efficient in
dtZ

extracting information during rapid transients. However, in
the presence of high-frequency noise temporal derivatives are
prone to instabilities and inaccuracies. Therefore, we used
0 a combination of low-pass and Savitzky-Golay (SG) filters
to measure the variations of hemodynamic responses. The
‘ ‘ ‘ low-pass filter served to remove most noise components, and
0 50 ‘O%me [Sec; 50 200 250 afterwards the derivative of the signal was estimated using the
output of a SG filter. The basic idea of the SG filter is based
(c)Detectedflags on least-squares polynomial fitting. The polynomial of degree
is expressed as

-2

Fig. 5: Estimated onset and offset flags. (a) Low-pass-filtered sigrﬁtl
from one trial data (redXp,Hp, blue: xyup). (b) Difference of t) — K tk 4
derivatives ofxp,Hp andxynp. (C) Estimated onset and offset flags. p(t) = ;ak ) (4)
Values of 1 and -1 represent the onset and offset flags, respectively. k=

All calculated flags are extracted at their correct positions. wheretK represents thith power of timet (k=0,...,K), and

the scalarsy are the polynomial coefficients. The fitting of the

followed by a 15 sec period where the checkerboard pattecr effic.ie_ntsak are .perfo.rmed by minimizing & cost function
t). Fitting curve is defined as:

stopped reversing and remained still. We define as an “O
period” the period of time when the checkerboard is reversing R(t) = arg mirg(t)

(whatever the stimulus frequency), and as an “OFF-period” the p(t)

period of time when the checkerboard is not reversing. In a M

practical BCI application, commands should be detected only (S(t) Z/M{D(t+T) —X(t+T)}2dT> : 5)
when the subject is focusing on as stimulus, therefore during -

an ON-period (corresponding to a selective attention switt¥here [-M,M] represents the time range centered tofor

/ gaze target Change in a multi-stimulus System [17]) In thfgtlng Then, temporal derivatives can be extracted such as:
condition, SSVEP can be observed in response to the reversing

K
pattern. During the OFF-period, the subject is not focusing E)‘((t) = z ka1, (6)
on any command, and therefore the system should clearly dt k=1
identify the event as an idle mode (no command). Subjects 5 K
attended several recording sessions (each subject participated d—At — % k(k—Datk2 7
! _ _ ! . SR = Y k(k—Dad* 2. Y
2-4 times). Recording sessions were carried out on different dt &

fatigue effects. The number of the recording sessions va e active and the idle modes were estimated using the
due to the failure of some subjects to fulfill attention-relate@ °"V'"9 workflow.

inclusion criteria: having enough sleep on the night before thel) A low-pass filter was applied to extract slow NIRS
recording, and not feeling tired before the experiment. A total ~ oscillations with resulting signatgo,wn(t) andxqmb(t)

of 37 blocks were recorded for all subjects (hence, 37 trials  (Fig. 5-(a)).
per stimulation frequency). 2) Definey(t) considering @Hb and HHb changes, and its

derivative as

days (two blocks maximum per day and per subject) to redu_;a
ri

B. Feature extraction Y(t) = Ro,Hb(t) — RuHb(t), (8)

In this study, we intend to detect the difference between d d

. d,
active and idle states using NIRS. We can observe (Fig. 2) ay(t) = axosz(t)—axHHb(t). 9)
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The derivatives ofy(t) was estimated using a SG filter 100
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with M = 0.1 sec andK = 2. The difference of the 2nd ¥ 2 T
derivatives ofy(t) was also calculated (shown in Fig. 3 2
5-(b)) % 50 %
3) Onset flag and Offset flags were calculated for eachg I
time pointt as shown in Fig. 5-(c) when the following 3 3
conditions using extrema were satisfied: 5 10 15 5 10 15
Onset flag: time [sec] time [sec]
3 N-peri FF-peri
St — {tI%y(t) -0, %y(t) _ o (a). @) pe- od - (b).O F pe.rl.od
Fig. 7: Active and idle modes detection using condition flags. The
d3 number of active and idle trials detected using NIRS increased for

@y(t ) <0, @y(ﬁ) > 0}, (10) longer epoch lengths. It decreased slightly for epoch lengths larger
) than about 13 sec, which may be due to attentional drops over long
Offset flag: periods of stimulation (it is difficult for a subject to focus for long

d RE periods of time).
Soffset = {t ay(t) <0, Ey(t) =
3
%y(t ) >0, @y(ﬁ) <0}, (11) frequency centered at each stimulation frequenéjst of

. . all, the SSVEP SNR values were normalized by computing
Here, the increase and decrease of the hemodynamic respopS&syres across all trials. Therefore the normalized SNR peaks

to SSVEP stimulation is expressed fg/t). Moreover the had an average value of 0 and a standard deviation of 1,
following three signal derlvatlons%y dtsY( ) dtsY( ©))  whatever the frequency. The threshold parameter controlled
were used to extract the beginning and the end of the stimulRe sensibility and specificity of BCl command detections.
tion based on the extremum of the 2nd derivatives. These onggth a low threshold, BCl commands would be estimated at
and offset flags were used to detect if the subject is in active@migher rate, but with an increased risk of false detections
idle mode. There are two possible outcome from this featug@ring OFF-periods (a false positive). For a higher threshold,
extraction procedure: either there is one flag only (either ongge risk of false detection was lower, but the BCl commands
or offset flag), and in that case a decision is taken (OFF @ere estimated at a lower rate during the ON-period. We
ON period is detected); or there are both flags and no flagsed two thresholds 1:Gstd (std is the standard deviation
in the analysis window, and in that case no decision is takeficulated from the first OFF-period in every block) as the

(unknown condition). The NIRS signal analysis therefore legwer threshold (TH1) and 2:td as the higher threshold
to a two-class classification, with a third output class (rejectH2).

class). The EEG features (command estimates) and NIRS features
_ (onset and offset flags, described in sub-section 1l1I-B) were
C. Joint EEG-NIRS-BCI then fed mto a Jomt cIas&ﬁerﬂmEE%andﬁﬁ&NJrRS

In this study, SSVEP-BCI command classification was peghanne e a catiorperformanceveresetected
formed using simultaneous EEG and NIRS signals (Fig. 6) (ﬁamechaﬁnelforaﬂfub]ect) As explamed above the NIRS
order to optimize the detection. For each trial, the NIRS signfgature extraction led to a two-class classification (OFF- or
was used to detect if the subject was in an active or idle mod@N-period) with a reject class (undetermined period). When
The EEG signal was used to estimate which command wasaid ON-period was detected, the command detection was based
be activated. The system shall therefore detect either oneosf the best command detected using EEG (regardless of the
the eight possible commands, or an idle state. threshold). When an OFF-period is detected, an idle command

The reversing checkerboard stimulation elicited SSVEP returned. When the reject output class is detected, the BCI
responses in the EEG signal, with peaks at the stimula@mmand estimation is based on the best command detected
frequency as well as its harmonick detec SSVEPs, shortusing EEG, but taking into account a reject threshold (either
EEG epochs (1-14 sec) were extracted to compute Fourlddl or TH2) to detect the idle commandhese thresh-
transform. tn—this-study, tThe power spectrum of each trialolds were selected to compare sensibility and specificity in
was normalized by subtraction of the spectrum of the fir@iN/OFF periodin a practical system, it can be optimized by
OFF-period in each block. For command detection, only thginimizing error rates with a receiver operating characteristic
fundamental frequency was used because the power of (R&C) curve.
other harmonics was not high enough to distinguish commandsn this study, only one EEG and one NIRS channels were
(the fundamental frequency provided the highest estimatisglected individually for each subject, because BCI system
accuracy). The SSVEP measurement was enhanced by centih small number of channels has advantages in terms of
puting the ratio of the Fourier power of the SSVEP peak ttomputational cost and practical u§éne EEG channel, with
the Fourier power at neighboring frequencies, the so-calladhich the best BClI command detection was achieved, was
SSVEP signal-to-noise ratio (SSVEP SNR) [16]. selected.Similarly, the NIRS channel was selected based on

From the EEG signal, a BClI command was estimatdéle best active/idle mode detectioBpatial SSVEP patterns
when the SSVEP response exceeded a threspoldl Hz which are widely distributed over the occipital were not used,
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TABLE II: Selected EEG and NIRS channels with the best classi. Evaluation of joint EEG-NIRS-BCI

cation performance for each subject. : ~ . . . -
Subject —EEG channel —NIRS chanmel This sub-section presents results obtained with the joint

1 a 13 EEG-NIRS classifier (defined in sub-section IlI-C). Before
2 3 8 discussing the overall results, we will first of all present results
i i 180 pertaining to data gathered in a single block (eight ON-periods
5 3 12 and eight OFF-periods). As was done for the study presented
6 1 8 above in the sub-section IV-A, ON- and OFF-periods trials
g g 1‘5‘ were investigated separately.

9 5 3 We compared the results obtained using only EEG-based
10 1 7 detection against the results obtained using a joint EEG-NIRS
g j 192 classifier. Eight commands and the idle mode (total of 9
13 > 6 classes) were estimated. Detection results are shown in Fig.

8. NIRS- .

although it is helpful to reduce classification errofsalysis each subject were summarized in TableAk expected, the
techniques considering multiple signals of EEG and NIRS Wror using the EEG-based classifier was higher for offset
be discussed later. events using TH1 compared to TH2, and conversely the error
was higher for onset events using TH2 compared to TH1.
When using the joint EEG-NIRS classifier, the error decreased
for OFF-period when using TH1, and for ON-period when

To validate this approach, we used the EEG and NIRSING TH2. These results are summarized in Table III, 1V.
recordings to estimate the BCI commands offline. First, W™ Poth TH1 and TH2, error decreased with longer time
will demonstrate the effect of epoch length on the perfofPOchs. Moreover, performance is improved for longer time
mances of ON- and OFF-modes estimation using NIRS si pochs. Using NIRS features, the lowest error from Table

nals. Then, we will present the results obtained using the joffit Was 6 % for a 9 sec time epoch and TH1. In this case,
classification approach described above (sub-section 111-C)€0mparing an EEG-based classification against a joint EEG-
NIRS classification, the error decreased by%1

The same investigation was performed on the whole
database. Results are summarized in Fig. 9 and Table V,
VI. In Fig. 9, similar characteristics were observed as the

As described in the section I, NIRS signal was used @sults obtained using the single block data. As shown in
detect three pOSSible states: “ON", “OFF”, and “UnknOWn”Fig_ 9_(a2) and (b]_)’ errors were improved when using the
Detection performance was evaluated using different epogfint EEG-NIRS classifier. It can be observed that events
lengths. Epochs were extracted from all trials in ON- anglere estimated correctly by NIRS and the incidence of false
OFF-periods using different time durations starting from thgositive onset or offset events was decreased. According to
beginning of each period. A single epoch is extracted frofRe averaged performances for each threshold TH2 induced
each trial. Fig. 7 shows results obtained on 296 trials of OMetter classification results than TH1 (see Table V). Indeed,
and OFF-periods, investigated separately. The result using ophing TH2 percentages of errors were decreased of 96, 85,
trials of ON-period is shown in Fig. 7-(a), and Fig. 7-(b) is76, 58, and 53 for epoch lengths of 1, 3, 5, 9, and 12 sec
for OFF-period. We define the ratio of detected trials usingspectively.
the three detection states as follows: Furthermore, the performance of our BCI system was as-

Non + Nore sessed on the basis of the Shannon’s information transfer rate
Non & Norr & Nomkmomn (12) (ITR). For equrobable user comman@sand s commands
performed per minute, where each command was correctly de-
where Non, Norr, and Nynknown represent number of “ON”, coded with equal probability, ITR is given by the following
“OFF”, and “Unknown” estimation results, respectively. equation:

These detected trials can be further subdivided into true- 1-p
positives (“True” in Fig. 7) and false-positives (‘Error” in Fig.  |TR=$[10g2(C) + ploge(p) + (1 - p)logz(=—7 )] (14)

7). False-positives are defined as:

IV. RESULTS

A. NIRS feature extraction

(Ratio of detected trials=

ITRs were evaluated offline as shown in Table VII, VIII. We
(Total of wrong estimation 13 considere_d the epoch duration as an estimate of the “a_ctivation
(Total of detected trials ° ) delay”. W|th 8 commqnds and an idle mode=€ 9), p varies

depending classification errors from Table V. Because the
From Fig. 7, it can be observed that the number of detectetiusion of the idle mode slows down our BCI system, we
trials increased with epoch time length. In both conditions, ttebtained a rather slow ITR. Nevertheless, our approach of joint
maximum of detected trials was about 88 most of them EEG-NIRS classification clearly improves ITRs, notably, for
being correctly detected (true-positives). epoch durations of 1 sec and 3 sec.

(Error) =
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TABLE III: Summary of joint BCI command estimation resulg], reaching beyond the specific goals of this study, we point out
as shown in Fig. 8. The average of the errd¥ |s shown in the several approaches for further improvement of NIRS analysis,
All” column. especially regarding online NIRS based BCI.

Time epoch [sec] oL Gower threspold) - Ti12 (iger threshold) First, noise reduction may be the most important prepro-
1 75 71 74 | 100 0 50 cessing step in the extraction of NIRS features. We applied a
3 329 20 1750 30 simple low-pass filter, which could be improved using more
f; ig 209 260 gg 8 ig advanced processing techniques (such as adaptive filtering and
12 13 0 6 12 0 6 wavelet filtering as discussed in section 1l). Indeed, noise

patterns varied between subjects, and nonlinear components
were present such as body movement, heart rate, and respira-
TABLE IV: Summary of command estimation improvemeft][by  tion effectsMoreover, spatial distribution considering multiple

NIRS, as shown in Fig. 8. Improvement is expressed as ratio of thgynais will be useful to reduce classification errors in both
error calculated with the joint EEG-NIRS classifier to the error withPg

the EEG analysis only. aspects o_f E_EG based command est@mation and of NIRS
THT (lower threshold)  TH2 (higer threshold) ~ Pased active/idle mode detection. Spatial SSVEP patterns in
Time epoch [sec]] ON  OFF All ON OFF All EEG have been investigated in many studies. Friman et al.
é igg g gg 17%0 8 gg investigated 6 different spatial signal processing techniques,
5 100 29 36 | 52 0 50 and concluded that the minimum energy combination was
9 100 O 11 33 0 34 the most useful method [36]. In more recent years, some
12 100 0 11 | 24 0 24

advanced techniques, such as a regularized common spatial
patterns (CSP) [37] and the analytic CSP [38], have been
proposed. Compared to EEG analysis, there are fewer studies
V. DISCUSSIONS in NIRS analysis. Most of them selected only a region of

. . interest (ROI) in which task related patterns are appeared. For
Current progress shows that NIRS features effectively i irther improvement, signal processing using ROI and non-
prove BCI performance not only for motor imagery but also f | simultaneously ;hould be developed
SSVEP. Previous studies shown in Table | revealed that bloo%etection time is the main bottleneck for. BCl systems. ITRs
oxygenation responses are useful especially for a sensg '

4 n verel nstrain h mman ion r in
motor rhythm based BCI. Such hemodynamic responses g severely constrained by the command detection rate,

. . . ) . . ) ot\%erto develop an efficient BCI system, NIRS features should
visual stimulation were investigated mostly in fMRI stud|eso b y

it ldom i tinated with NIRS. F . i E correctly detected within a time interval as short as 2-3
was setdom Investigated wi - Tom OUr eXperimenta, . |, this and previous studies, slow NIRS oscillations at the
results, hemodynamic responses recorded with NIRS

. . inning and at the end of stimulation are observed. However,
Improve SSVEP baseBCI. Our hypqthe_sls_was that hemo'thegse re%ponses were delayed by 2-3 sec after the neural
dyna_m!c qhanges may be a promising indicator to overcqrggﬁvity — therefore a simple measurement of the NIRS signal
the limitations of the command dgtecuon based on short tin plitude is of limited interest (too slow) for BCI systems.
e s il presented nerean approac based on signal caraves
of NIRpS fea,tures Bimodal recordi?/l pin EEG and NIR nd demonstrated its usefulngss for the fast_ detect_lon of NIRS.
. o g using an esponses. However, caution is necessary since this measure is
can improve existing EEG-BCI performances. l:urthermor&-ﬁnsitive to high frequency noise components. Pre-processing
of artifacts is necessary to ensure the detection quality, which
TABLE V: Summary of joint BCl command estimation resuleg][ 'S Why_we removed higher frequency components with a low-
as shown in Fig. 9. pass filter. However, these frequency components, as well as

THI (lower threshold)  TH2 (higer threshold)  the information from the rejected channels — which we did not
Time epoch [sec]] ON  OFF Al | ON OFF Al use in this analysis — may also contain valuable information.
1 81 86 83 97 2 49 o ot :
3 9 71 61 79 1 0 Therefor_e,_there is still room for mprover_nents.
5 41 46 43 63 0 31 One limit of our study is the stimulation protocol used.
9 25 23 25 42 1 22 NIRS feature extraction could be tested using different time
12 21 22 22 33 1 17

ranges of stimulation, but for practical reasons we could only
record fixed epochs of 15 sec in our study. Despite this
TABLE VI: Summary of command estimation improvemeft]|[ as appr'oac.h allowed us.to collect interesting data, in practical
shown in Fig. 9. Improvement is expressed as ratio of the err@PPlications for an online BCI system, the NIRS response may
calculated with the joint EEG-NIRS classifier to the error with thehange depending on the stimulation time. In addition, the use
EEG analysis only. of NIRS features to detect idle modes on short intervals should

TH1 (lower threshold)  TH2 (higer threshold) i ;
Time epoch [sec] ON  OFF Al | ON OFF Al only be done wnhlproper care. Inde_ed, the estimated flags may
1 100 90 o4 98 50 96 cause false positives when a subject focuses on the SSVEP
3 100 71 81 | 85 50 85 stimulation for too short time  2-3 sec). To circumvent
5 100 48 63 | 77 0 76 that risk, we suggest that a threshold could be adapted to the
9 100 23 40 | 58 33 58 I : .
12 00 22 37 | 52 100 53 2nd derivative depending on the epoch length, in that case

oscillations with too low amplitudes could be ignored.
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TABLE VII: Information transfer rates (ITR) for nine commands [6]
including the idle mode, corresponding to all sets in Table V. The

values in each cell represent the ITR when using EEG and NIRE]
features. (8]

Time epoch [sec]| TH1 TH2
1 1.33 42.01 (9]
3 7.50 19.98
5 10.73 16.16
9 10.78 11.67
12 8.75 10.01 [10]

TABLE VIII: Improvement of information transfer rates (ITR) with
inclusion of NIRS features%)]. Improvement is expressed as ratig11]
of the ITR with the joint EEG-NIRS classifier to the ITR with the
EEG analysis only. The ITR was improved successfully even though
only one NIRS channel was used. [12]

Time epoch [sec]| TH1 TH2
1 43.3 1.1
3 214 1.3
5 4.0 1.4
9 4.4 1.6
12 4.4 1.5 [13]

Finally, our proposed methodology can be applied to othﬁq]
modalities such as a motor imagery task. Although NIRS
signals have lower time resolution than EEG signals, it can
be used to reduce false positives. [15]

VI. CONCLUSIONS

In this study we propose an integrated signal processing
proach for a new dual-modality or joint EEG-NIRS-BCI based
on the SSVEP paradigm which improved the performances as
compared to an EEG-only BCI. Our method addressed sofmg
important drawbacks of EEG-based BCI designs by reducing
the required epoch lengths and the false positive commarfn{jé
during periods when the subject is not executing any comma
(OFF-period). The classification error for 9 classes, including
8 commands and an idle state output, were decreased with tﬂ?
inclusion of NIRS features. For 13 subjects, 9 class estimati[)n
errors for 3, 5, 9, 12 sec epochs were 40, 31, 22,%,7
respectively. In each time epoch, improved error ratios kf%]
NIRS (error with NIRS to error without NIRS) were 85,
76, 58, and 53%, respectively. These results were obtained
from only one EEG and one NIRS channel. It is possible
for future studies to improve further the proposed NIRBy
feature extraction especially by optimizing artifact removal
techniques. [22]
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